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Abstract. Bound states of anegativelycharged test particle and an electron are studied by
incorporating many-body effects (exchange and correlation) in the screening function of an
interacting electron gas via the local-field correction. Using a variational method and a matrix-
diagonalization method we determine the energies and the wave functions of the ground state and
the excited states as functions of the electron density for three-dimensional and two-dimensional
systems. For high electron density no bound states are found. Below a critical density the
number and the energy of the bound states increase with decreasing electron density. We also
present results for bound-state energies of apositivelycharged test particle with an electron, and
compare them with results obtained within the random-phase approximation where the local-field
correction is ignored.

1. Introduction

It is known that the potential of a test charge screened by a three-dimensional electron
gas gives rise to Friedel oscillations [1–3]. A similar effect is known in two-dimensional
systems [4]. The Friedel oscillations occur already within the framework of the random-
phase approximation (RPA). For two-dimensional systems it was argued recently [5] that
many-body effects, described by the local-field correction (LFC), strongly modify the
screening properties of the electron gas at low density. In the low-density range the screened
interaction potential of two negative (or two positive) test charges was found to be strongly
attractive (binding energies of order one rydberg) if many-body effects are included in the
screening function via the LFC. For one-dimensional [6] and two-dimensional systems [7,
8] the binding energy of these bound states was found to be much larger than for three-
dimensional systems [9]. The work described in [6–9] concerns the test-charge–test-charge
interaction screened by an electron gas, and the screening is described by the dielectric
function εtt (q).

In this paper we study bound states for the screened test-charge–electron interaction
for two- and three-dimensional systems. The essential difference from the earlier studies
[6–9] is that here the screening functionεte(q) takes a different form to account for the
indistinguishability of the electrons. We are using the Kukkonen and Overhauser approach
[10] in order to treat this effect.

Our motivation for this work (as in the earlier publications [6–9]) is to understand,
within a simple model and with a transparent calculation, the counterintuitive possibility of
a Coulomb-interaction-induced attraction in the electron gas between two equally charged
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particles. An analytical expression for the LFC as a function of the Wigner–Seitz parameter
rs enables us to study the screened interaction as a function of electron density. Screening
effects for a positively charged impurity are generally treated in the literature within the
RPA and many-body effects are neglected. In some theoretical papers also the screening
function for the test-charge–test-charge interaction is used. We insist here that the screening
function for the test-charge–electron interaction has to be used in that case.

The paper is organized as follows. In section 2 we describe the model and the theory.
Our results for negative test charges are presented in section 3 and the results for positive test
charges are given in section 4. We discuss the method, the results and possible experiments
in section 5. We give our conclusions in section 6.

2. The model and theory

2.1. The model: the screened Coulomb interaction

As the model we use ad-dimensional electron gas(d = 3, 2) with a parabolic dispersion
and densityNd . Distances are expressed in units of the effective Bohr radiusa∗ = εL/m∗e2

with the Planck constanth/2π = 1. Wavenumbers are expressed in units of the inverse
Bohr radius.m∗ is the effective mass andεL is the dielectric constant of the background.
Energy values are expressed in units of the effective rydberg, Ryd∗ = m∗e4/2ε2

L. The
density parameterrs is given by rs = [3/4πN3a

∗3]1/3 for three dimensions and by
rs = [1/πN2a

∗2]1/2 for two dimensions.rsa∗ is the Wigner–Seitz radius.N3 = k3
F /3π

2

(N2 = k2
F /2π) is the electron density in three (two) dimensions andkF is the Fermi

wavenumber.
The Coulomb interaction potential in the Fourier space between two negative test

charges (t t) is repulsive and is given byVtt (q) = +V (q) with V (q) = 4πe2/εLq
2 in

three dimensions andV (q) = 2πe2/εLq in two dimensions. The screened interaction
potentialVtt,sc(q) is written as

Vtt,sc(q) = Vtt (q)

εtt (q)
. (1a)

The dielectric functionεtt (q), calculated within the RPA and including the LFCG(q), is
given by [10]

1

εtt (q)
= 1− V (q)G(q)X0(q)

1+ V (q)[1−G(q)]X0(q)
. (1b)

X0(q) is the Lindhard function of the free-electron gas [1]. This screening function was
used in our earlier work [7–9].

For the interaction between a negatively charged test particle (an electron) and an
electron(te) the potential is given byVte(q) = +V (q). For a positive test charge the
interaction potential is given byVte(q) = −V (q). The screened interaction potential
Vte,sc(q) is expressed as [10]

Vte,sc(q) = Vte(q)

εte(q)
(2a)

with

εte(q) = 1+ V (q)[1−G(q)]X0(q). (2b)

For G(q) = 0 one gets the RPA expressionεRPA(q) = 1 + V (q)X0(q), and εtt (q) =
εte(q) = εRPA(q). The difference betweenεte(q) and εtt (q) is due to the different many-
body effects as described byG(q): εtt (q) > εte(q) andVtt,sc(q) < Vte,sc(q).
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In our calculation we use for the LFC the sum-rule approximation [11] of the Singwi,
Tosi, Land and Sj̈olander (STLS) approach [12]. For a review concerning the STLS
approach, see [13]. In the STLS approach the compressibility sum rule is not fulfilled.
For this reason we modified the sum-rule approach in order to fulfil the compressibility sum
rule. Details will be published elsewhere [14]. The LFC is parametrized by three coefficients
Cid(rs) (i = 1, 2, 3) and has a similar form to that within the Hubbard approximation [2]
where only exchange effects are taken into account. The form used for the LFC was
described in reference [8] for two dimensions and in reference [9] for three dimensions.
Finally, we note that this sum-rule approach is in reasonable agreement with recent Monte
Carlo calculations for the screening function of the two-dimensional [15] and the three-
dimensional [16] electron gas.

For the three-dimensional electron gas the LFC is written as [14]

G(q) = r3/4
s

0.846q2

2.188q2
3C13(rs)+ q2C23(rs)− q3qC33(rs)

(3a)

with q3 = 121/4/r
3/4
s a∗. For the two-dimensional electron gas the LFC is given by [14]

G(q) = r2/3
s

1.402q

[2.644q2
2C12(rs)2+ q2C22(rs)2− q2qC32(rs)]1/2

(3b)

with q2 = 21/2/r
2/3
s a∗. During the last thirty years a lot of activity has been directed towards

the study of many-body effects via the LFC. A general discussion can be found in reference
[13]. As long as exchange and correlation effects are included in the LFC, the specific form
used forG(q) in the calculation is not important for our results. This was demonstrated for
the test-charge–test-charge interaction [8, 9].

2.2. Theory: the Schr¨odinger equation

The Schr̈odinger equation for the screened potential is solved numerically in the momentum
space. As was shown before for the test-charge–test-charge interaction [8, 9], this method
is accurate. The Schrödinger equation in the momentum space is given by

q2

2m
ψ(q)+ 1

(2π)d

∫
ddq′ Vte,sc(q − q′)ψ(q′) = Eψ(q). (4)

We have discretized the integral overq′ in equation (4) in the form of a matrix. The
eigenenergy and eigenfunction problem is then solved numerically by a standard method
for matrix diagonalization. Details can be found in reference [8] and reference [9]. At low
electron density the matrix is ill defined forq′ − q = 0, and the numerical results are less
accurate in the case of an attractive test charge where the binding energy is dominated by the
behaviour forq′ → q. This is important in the weakly screened case where the variational
method sometimes gives a slightly larger binding energy than the numerical method.

For three dimensions the wave functionψ(r) is given byφnr l(r)Ylm(ϕ, θ) [17]. The
degeneracy of these states isgl = 2l + 1. φnr l(r) is the solution of the radial Schrödinger
equation for the effective potentialVeff (r) = Vl(r)+Vte,sc(r) with Vl(r) = l(l+1)/2m∗r2.
Veff (r) is strongly repulsive at small distancesVeff (r → 0)/Ryd∗ = l(l+1)a∗2/r2+2a∗/r.
It is clear that forl > 0 the behaviour of the wave function for smallr is determined by
Vl(r), and φnr l(r → 0) ∝ rl . In the momentum space the wave function is given by
ψ(q) = φnr l(q)Ylm(θ, ϕ) andφnr l(q → 0) ∝ ql .

For two dimensions we useψ(r) = φnr l(r) exp[±ilϕ] with degeneracygl = 1 for l = 0
and gl = 2 for l > 0. φnr l(r) is the solution of the radial Schrödinger equation for the
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effective potentialVeff (r) = Vl(r) + Vte,sc(r) with Vl(r) = l2/2m∗r2. In the momentum
space the wave function is written asψ(q) = φnr l(q) exp(±ilϕ). In the following we will
useφ(r) instead ofφnr l(r).

In the following we also use the trial-wave-function method, which is easy to apply if
more accurate expressions for the LFC become available. In the present paper we derive
estimates for the accuracy of this method by comparing with the matrix-diagonalization
method. This method is numerically very demanding because no symmetry arguments have
been used.

3. Negative test charges

3.1. The variational wave function

With a trial wave functionφvar(r) the variational energy is given byEvar = 〈T 〉 + 〈Vl〉 +
〈Vte,sc〉. The average〈O〉 = ∫∞0 dr rd−1φvar(r)

∗Oφvar(r) for O = T , Vl andVte,sc can be
calculated analytically for some trial wave functions. We use as the variational radial wave
function

φvar(r) = Ark1/2e−r
2/2α2

(5)

with the normalization constantA and the variational parametersk1 andα. The screened
repulsive potential shows a minimum as a function ofr like a one-dimensional oscillator
potential; this fact motivated the choice ofφvar(r).

Figure 1. The screened potentialVte,sc(r) versus distancer for rs = 40 in three dimensions for
a negative test charge. For the solid line the LFC is included and the dashed line represents the
RPA. In the inset we showVte,sc(rm) andrm versusrs .

The variational wave function shows a maximum atr∗ = (k1/2)1/2α. For k1 > 0 the
wave function has a node atr = 0 and we use the notationnr = 1 for the radial quantum
numbernr . For different values ofl the notation for the statenr l is 1s, 1p or 1d. We find
that the bound states are very extended in space due to the large repulsion at small distances:
see the large value ofrm found for the minimum of the screened potential in figure 1. The
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variational form of the radial wave function as given in equation (5) was successfully used
in describing the bound states for the test-charge–test-charge interaction. For details, see
references [8, 9].

3.2. Results for three dimensions

In the real space the screened Coulomb interaction in three dimensions is given by

Vte,sc(r) = 1

2π2r

∫ ∞
0

dq q sin(qr)Vte,sc(q). (6)

A representative example forVte,sc(r) is shown in figure 1 forrs = 40 with a minimum
Vte,sc(rm) = −6.93 mRyd∗ at rm = 34.0a∗. Note the strong Coulomb repulsion for small
distances. We remark that the LFC shifts the minimum to lower energies and to larger
distances as compared to the RPA. A systematic study ofVte,sc(rm) and rm versusrs is
shown in the inset of figure 1. We note the strong variation ofVte,sc(rm) with rs with a
minimum of−12.4 mRyd∗ at rs = 9.

Figure 2. The minimal energyEmin and variational parametersα andk1 versusrs for nr = 1
and l = 0, 1, 2 in three dimensions including the LFC for a negative test charge. The solid dots
are the results obtained by matrix diagonalization.

Our results for the binding energy versusrs are shown in figure 2. The binding energies
are of order 1 mRyd∗ and the lower-lying energy states are well described by our variational
method. However, when the binding energy is small, the matrix-diagonalization method



3754 A Gold and A Ghazali

gives a larger binding energy than the variational method. Forrs < rsc = 20 no bound state
exists. Our variational results give a smaller binding energy with a critical density given
by rsc = 27.5. Figure 2 contains the complete information about the ground state and the
excited states.

The variational parametersα andk1 versusrs are also shown in figure 2. Forrs = 40
we foundr∗ = 34.6a∗ for l = 0, which is in good agreement withrm; see figure 1.r∗ and
rm increase with increasingrs . Note thatα andk1 are nearly independent ofl which means
that all of these states show a maximum at nearly the samer∗ ≈ rm.

Figure 3. The minimal energyEmin and variational parametersα andk1 versusrs for nr = 1
and l = 0, 1 in three dimensions within the RPA for a negative test charge.

Similar results are obtained within the RPA when the LFC is set to zero; see figure 3.
However, the binding energy of the ground state is about a factor of 3 smaller than with
the LFC andrsc is much larger(rsc ≈ 40). These results are interesting from a theoretical
point of view: from figure 3 we conclude that many-body effects described by the LFC are
not necessary in order to obtain bound states. However, the inclusion of the LFC reduces
the critical density considerably: remember thatN3 ∝ 1/r3

s .
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Figure 4. The screened potentialVte,sc(r) versus the distancer for rs = 10 in two dimensions
for a negative test charge. For the solid line the LFC is included and the dashed line represents
the RPA. In the inset we showVte,sc(rm) andrm versusrs .

3.3. Results for two dimensions

In two dimensions the screened Coulomb interaction in the real space is given by

Vte,sc(r) = 1

2π

∫ ∞
0

dq qJ0(qr)Vte,sc(q). (7)

J0(x) is the zero-order Bessel function of the first kind. A representative example for
Vte,sc(r) is shown in figure 4 forrs = 10 with a minimum ofVte,sc(rm) = −85 mRyd∗

at rm = 7.4a∗. We remark that the LFC does not lower the minimum as compared to the
RPA. A systematic study ofVte,sc(rm) and rm versusrs is shown in the inset of figure 4.
We note the strong variation ofVte,sc(rm) with rs with a minimum of−120.4 mRyd∗ at
rs = 3.6. It is clear that in two dimensions the attraction is a factor 10 larger than that in
three dimensions; compare the insets in figure 1 and figure 4.

Our results for the binding energy versusrs are shown in figure 5. The binding energies
are of order 20 mRyd∗. In general we find that the matrix-diagonalization method gives
a larger binding energy than the variational method, as expected. Forrs < rsc = 4.7 no
bound state is found. Our variational results give a smaller binding energy with the critical
densityrsc = 5.9.

The variational parametersα andk1 versusrs are also shown in figure 5. Forrs = 10
we find thatr∗ = 7.7a∗ for l = 0, which is in good agreement withrm; see figure 4. In
two dimensions the bound states are less extended in space than in three dimensions.

4. Positive test charges

4.1. The screened potential

In figure 6 we show the screened potential for a positive test charge forrs = 3 and three
dimensions. We present results for the test-charge–test-charge interaction, the test-charge–
electron interaction, the RPA, and the Thomas–Fermi approximation (TFA). Within the
TFA one usesG(q) = 0, andX0(q) is replaced by the density of states at the Fermi energy
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Figure 5. The minimal energyEmin and variational parametersα andk1 versusrs for nr = 1
and l = 0, 1, 2 in two dimensions including the LFC for a negative test charge. The solid dots
are the results obtained by matrix diagonalization.

ρF = X0(q = 0). It is important to realize that already forrs = 3 important differences exist
for the screened potential due to many-body effects. For normal metals the Wigner–Seitz
parameter is given by 1< rs < 5. We hope that figure 6 will convince experimenters to
take many-body effects seriously. The small differences seen in figure 6 give rise to very
different bound-state energies, as shown in the following.

4.2. The variational wave function

We apply variational wave function of the (unscreened) hydrogen atom. For the ground
state, which is the 1s state, we use

φvar(r) = Ae−r/2ν . (8)

For the first excited state, which is the 2s state, we use

φvar(r) = A(1− rD)e−r/2κ . (9)

Note that〈1s|2s〉 = 0, which implies a condition forD. For the second excited state, the
2p state, we use

φvar(r) = Are−r/2µ. (10)

ν, κ andµ are the variational parameters. For details of the variational form, see reference
[8] and reference [9], where the screened test-charge–test-charge interaction was studied.
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Figure 6. The screened potentialVsc(r) versus distancer for rs = 3 in three dimensions
for a positive test charge. We show the results for the test-charge–test-charge interaction, the
test-charge–electron interaction, the RPA, and the Thomas–Fermi approximation (TFA). On the
r.h.s. an enlarged energy scale is used.

Figure 7. The minimal energyEmin versusrs for the 1s state (l.h.s.) and for the 2s and 2p states
(r.h.s.) in three dimensions including the LFC (solid lines) and within the RPA (dashed lines) for
a positive test charge. The solid dots are the results obtained by matrix diagonalization. Some
numerical results for 3s, 3p, and 3d states (with the LFC included) are shown as bars.

The equations given there can be used together with the appropriate form for the screening
function εte(q).

4.3. Results for three dimensions

Our results for the ground-state energy and the first excited states versusrs are shown in
figure 7. With increasing density the binding energies decrease due to screening effects and
vanish at a critical density, which is Mott’s densityNM [18]. Note that the 2s and the 2p
states are nearly degenerate forrs > 30. For very low density,rs = 40 andrs = 50, we
also found 3s, 3p and 3d states with the matrix-diagonalization method and using the LFC;
see figure 7. However, we have not studied these states in detail.
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We mention thatN1/3a∗ = 0.62/rs and, accordingly,NM is related to a critical density
parameterrsM . For the ground state we obtainedrsM = 2.13 by using the RPA and
rsM = 1.75 by using the LFC. Reasonable agreement is obtained between the variational
method and the matrix-diagonalization method.

Figure 8. The minimal energyEmin versusrs for the 1s state in two dimensions including the
LFC (solid lines) and within the RPA (dashed lines) for a positive test charge. The solid dots
are the results obtained by matrix diagonalization.

4.4. Results for two dimensions

In two dimensions the Coulomb potential screened within the RPA has a bound state for any
electron density [19, 20]. A critical density (Mott’s density), where the binding energy of
the ground state vanishes, does not exist in two dimensions. Our results for the ground-state
energy versusrs are shown in figure 8. As found in three dimensions, the LFC increases
the binding-state energy as compared to the RPA. Forrs → ∞ one finds the unscreened
value for the binding energy, which is−4 Ryd∗.

Our results for the excited states are shown in figure 9. The LFC increases the binding
energy by 50%. Forrs → ∞ the unscreened value−4 Ryd∗/9 is obtained. The Mott
density for the excited states isrsM = 11 if the LFC is included and aboutrsM = 27 within
the RPA.

5. Discussion

5.1. Negative test charges

We believe that our results in three dimensions are only of theoretical interest. Normal
metals are characterized byrs < 5 while molecular metals such as the doped fulleride
K3C60 have smaller density,rs ≈ 10. In three-dimensional systems the bound states for the
test-charge–electron interaction appear at low density. At densitiesrs > 10 we expect that
disorder effects will dominate the physical properties.

Our results obtained for two-dimensional systems might be relevant in nature for two
reasons. First, by remote doping, disorder effects can be made small in heterostructures.
In addition, the bound states forrs > rsc have a large binding energy, and even for
the test-charge–electron interaction the parameterrsc ≈ 4.7 seems accessible in two-
dimensional systems. Currently used remotely doped GaAs/AlxGa1−xAs heterostructures
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Figure 9. The minimal energyEmin versusrs for the 2s and 2p states in two dimensions
including the LFC (solid lines) and within the RPA (dashed lines) for a positive test charge. The
solid dots are the results obtained by matrix diagonalization.

become insulating [21] due to a metal–insulator transition [22] atrs > 5.
We therefore suggest the following experiment. Place a negatively charged impurity

into a two-dimensional electron gas which is remotely doped in order to provide a finite
electron density. Forrs > rsc we predict bound states between the impurity and an electron
in the electron gas if disorder effects are sufficiently small. The disorder must be smaller
than in the samples used in reference [21].

Table 1. For negative test charges: the critical density parameterrsc and binding energy for
rs ≈ 2rsc of the 1s state found by the variational method for two and three dimensions. The
values in curly brackets are the results obtained by using the matrix-diagonalization method.

d = 3 d = 2

rsc E1s(2rsc) rsc E1s(2rsc)

RPA 57.0{40} −0.5 mRyd∗ 9.8 {6.8} −10 mRyd∗
Test-charge–electron 27.5{20} −1.3 mRyd∗ 5.9 {4.7} −20 mRyd∗
Test-charge–test-charge [8, 9] 8.6{8} −40 mRyd∗ 2.4 {2.1} −350 mRyd∗

The critical parameterrsc for the existence of bound states can be compared with
results obtained for the test-charge–test-charge interaction. The results are shown in table
1. In two-dimensional systemsrsc is much lower and the binding energy is much higher
than in three-dimensional systems. Exchange effects present for the test-electron–electron
interaction lead to a largerrsc compared to that for the test-electron–test-electron interaction.

If many-body effects described by the LFC are neglected no difference exists between
the test-charge–test-charge and test-charge–electron interactions, and the RPA is the relevant
theory. Therefore, the RPA represents the lowest-order approximation to the above-
discussed problem of the screened electron–electron interaction. In order to get the full
information for the electron–electron interaction, not only the LFC for charge fluctuations
but also the LFC for spin fluctuations has to be included [10]. While our calculations
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for the test-charge–electron interaction give a much smaller binding energy than for the
test-charge–test-charge interaction, we believe that the electron–electron interaction gives
similar results to those for the test-electron–test-electron interaction; this was demonstrated
in reference [5] for the two-dimensional electron gas withrs = 4 and using the Hubbard
approximation.

Friedel oscillations are induced by the sharpness of the Fermi surface which leads to
the non-analytic behaviour ofX0(q) for q = 2kF . Within the RPA withG(q) = 0 one
can replaceX0(q) by X0(q = 0) = ρF and one obtains the TFA: Friedel oscillations
and attractive parts in the screened potential are absent. If one replacesX0(q) by
X0(q) = ρF /(1+ q2/4k2

F ) Friedel oscillations are absent; however, attractive parts in the
screened potential still exist. Therefore, we conclude that theq-dependence in the factor
[1−G(q)]X0(q) gives rise to an attractive part inVte,sc(r) andVtt,sc(r). For Vtt,sc(r) the
strength of this attractive part is determined byG(q), while G(q) andX0(q) determine
Vte,sc(r): by replacingX0(q) by X0(q) = ρF /(1+ q2/4k2

F ) we obtain similar values for
Vte,sc(rm) to those obtained by using the Lindhard expression forX0(q). Therefore, we
believe that Friedel oscillations are not the origin of the attraction found for the screened
potential.

The relevance of our calculation for possible superconductivity due to a Coulomb-
interaction-induced attraction goes back to Kohn and Luttinger [23], where an electron gas
with a short-range interaction has been discussed. The effective electron–electron interaction
was discussed by Kukkonen and Overhauser [10] and in reference [24]. For the three-
dimensional jellium model it was recently argued [25] that Coulomb-interaction-induced
superconductivity should not occur forrs < 10. This is in qualitative agreement with our
calculation for three dimensions; see table 1. On the other hand we conclude from our results
for the binding energy and forrsc that in two-dimensional systems attraction should occur
at higher electron density than in three dimensions. Our results for quasi-one-dimensional
systems will be published elsewhere [26].

5.2. Positive test charges

Our results for a positive test charge are relevant for a charged donor screened by an electron
gas and should be important for excitons, too. Our quantitative results on the effects of
the LFC indicate that many-body effects must be included in the screening function. In
addition, the screening function of the test-charge–electron interaction has to be used.

Table 2. For positive test charges: Mott’s critical density parameterrsM for the 1s, the 2s
and the 2p state for the test-charge–electron interaction obtained by the variational method for
two and three dimensions. The values in curly brackets are our results obtained by using the
matrix-diagonalization method.

d = 3 d = 2

rsM (RPA) rsM (LFC) rsM (RPA) rsM (LFC)

1s state 2.1{1.8} 1.8 {1.5} — —
2s state 17.8{16.9} 12.1 {11.5} 26.6 {26} 11.2 {11}
2p state 19.8{19.5} 12.9 {12.4} 28.8 {29} 11.2 {11}

The results concerning Mott’s parameterrsM for the vanishing of the bound state are
summarized in table 2 for the ground state (1s) and the excited states (2s, 2p). Large shifts
due to many-body effects are found forrsM for the excited states. For three dimensions most
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previous calculations [27, 28] ofrsM have been performed within the variational approach
and for the ground state only.

6. Conclusion

We studied the screened test-charge–electron interaction assuming a test particle with
negative charge. The bound-state energies found in the low-electron-density range for
rs > rsc are smaller than for the test-charge–test-charge interaction. Our calculation
shows that with decreasing system dimension the binding energy increases, and in the
two-dimensional electron gas, bound states can be expected at a moderate density(rs > 5).
In this paper we compared results forrsc obtained for the test-charge–electron interaction
and the test charge–test-charge interaction including many-body effects via the LFC.

For a test particle with a positive charge, many-body effects are important—however,
only at a quantitative level. If many-body effects are taken into account, the binding energy
increases by more than 20% for 0.5 < rs < 10. For excited states we find that Mott’s
parameterrsM is strongly reduced by many-body effects.
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