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Abstract. Bound states of aegativelycharged test particle and an electron are studied by
incorporating many-body effects (exchange and correlation) in the screening function of an
interacting electron gas via the local-field correction. Using a variational method and a matrix-
diagonalization method we determine the energies and the wave functions of the ground state and
the excited states as functions of the electron density for three-dimensional and two-dimensional
systems. For high electron density no bound states are found. Below a critical density the
number and the energy of the bound states increase with decreasing electron density. We also
present results for bound-state energies pbsitivelycharged test particle with an electron, and
compare them with results obtained within the random-phase approximation where the local-field
correction is ignored.

1. Introduction

It is known that the potential of a test charge screened by a three-dimensional electron
gas gives rise to Friedel oscillations [1-3]. A similar effect is known in two-dimensional
systems [4]. The Friedel oscillations occur already within the framework of the random-
phase approximation (RPA). For two-dimensional systems it was argued recently [5] that
many-body effects, described by the local-field correction (LFC), strongly modify the
screening properties of the electron gas at low density. In the low-density range the screened
interaction potential of two negative (or two positive) test charges was found to be strongly
attractive (binding energies of order one rydberg) if many-body effects are included in the
screening function via the LFC. For one-dimensional [6] and two-dimensional systems [7,
8] the binding energy of these bound states was found to be much larger than for three-
dimensional systems [9]. The work described in [6—9] concerns the test-charge—test-charge
interaction screened by an electron gas, and the screening is described by the dielectric
function e, (q).

In this paper we study bound states for the screened test-charge—electron interaction
for two- and three-dimensional systems. The essential difference from the earlier studies
[6-9] is that here the screening functiepn(q) takes a different form to account for the
indistinguishability of the electrons. We are using the Kukkonen and Overhauser approach
[10] in order to treat this effect.

Our mativation for this work (as in the earlier publications [6-9]) is to understand,
within a simple model and with a transparent calculation, the counterintuitive possibility of
a Coulomb-interaction-induced attraction in the electron gas between two equally charged
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particles. An analytical expression for the LFC as a function of the Wigner—Seitz parameter
rs enables us to study the screened interaction as a function of electron density. Screening
effects for a positively charged impurity are generally treated in the literature within the
RPA and many-body effects are neglected. In some theoretical papers also the screening
function for the test-charge—test-charge interaction is used. We insist here that the screening
function for the test-charge—electron interaction has to be used in that case.

The paper is organized as follows. In section 2 we describe the model and the theory.
Our results for negative test charges are presented in section 3 and the results for positive test
charges are given in section 4. We discuss the method, the results and possible experiments
in section 5. We give our conclusions in section 6.

2. The model and theory

2.1. The model: the screened Coulomb interaction

As the model we use d-dimensional electron ga@ = 3, 2) with a parabolic dispersion
and densityN,. Distances are expressed in units of the effective Bohr radius &, /m*e?

with the Planck constant/2r = 1. Wavenumbers are expressed in units of the inverse
Bohr radius.m* is the effective mass ang} is the dielectric constant of the background.
Energy values are expressed in units of the effective rydberg; Rydn*e“/z»sﬁ. The
density parameter, is given by r, = [3/4r N3a*3]'/® for three dimensions and by
ry = [1/7 Noa*?]Y/? for two dimensions.r,a* is the Wigner—Seitz radiusN; = k3 /37?2

(N2 = k%/27) is the electron density in three (two) dimensions andis the Fermi
wavenumber.

The Coulomb interaction potential in the Fourier space between two negative test
charges 1) is repulsive and is given by, (q) = +V(g) with V(¢) = 4mwe?/erq? in
three dimensions and’ (q) = 2we?/e g in two dimensions. The screened interaction
potential V;; ;.(¢) is written as

Vie(q)

e (q) -
The dielectric functiore, (¢), calculated within the RPA and including the LR@(q), is
given by [10]

Vzt,sv (Q) = (1a)

1 1-V(gpG(g)Xo(q)
en(q) 1+ V@Il - G(@)]Xolg)
Xo(q) is the Lindhard function of the free-electron gas [1]. This screening function was
used in our earlier work [7-9].
For the interaction between a negatively charged test particle (an electron) and an
electron (re) the potential is given by,.(¢) = +V(g). For a positive test charge the

(1b)

interaction potential is given by,.(q) = —V(q). The screened interaction potential
Viesc(q) 1S expressed as [10]
Vie
Vte.sc(q) = (Q) (2&)
€re(q)
with
&re(q) = 1+ V(@)1 — G(9)]Xo(q). (2b)

For G(g) = 0 one gets the RPA expressi@Rpa(q) = 1+ V(g)Xo(g), and g, (g) =
&(q) = erpa(q). The difference betwees.(¢) ande, (¢) is due to the different many-
body effects as described Wy(q): &:(q) > €:.(qg) and V;; ;c(¢) < Viese(q)-
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In our calculation we use for the LFC the sum-rule approximation [11] of the Singwi,
Tosi, Land and Sjlander (STLS) approach [12]. For a review concerning the STLS
approach, see [13]. In the STLS approach the compressibility sum rule is not fulfilled.
For this reason we modified the sum-rule approach in order to fulfil the compressibility sum
rule. Details will be published elsewhere [14]. The LFC is parametrized by three coefficients
Cia(ry) (i = 1,2,3) and has a similar form to that within the Hubbard approximation [2]
where only exchange effects are taken into account. The form used for the LFC was
described in reference [8] for two dimensions and in reference [9] for three dimensions.
Finally, we note that this sum-rule approach is in reasonable agreement with recent Monte
Carlo calculations for the screening function of the two-dimensional [15] and the three-
dimensional [16] electron gas.

For the three-dimensional electron gas the LFC is written as [14]

0.8464°
2.18873C13(ry) + q2Caa(ry) — q3q Caa(ry)
with g3 = 12Y4/r¥%a*. For the two-dimensional electron gas the LFC is given by [14]
1.402%
[2.64475C12(r,)2 + q2C22(r)? — 42 Caa(r;)]Y/2
with ¢, = 2Y/2/r%3a*. During the last thirty years a lot of activity has been directed towards
the study of many-body effects via the LFC. A general discussion can be found in reference
[13]. As long as exchange and correlation effects are included in the LFC, the specific form

used forG(q) in the calculation is not important for our results. This was demonstrated for
the test-charge—test-charge interaction [8, 9].

G(g) =r*

(32)

G(q) =r?® (3b)

2.2. Theory: the Scldinger equation

The Schédinger equation for the screened potential is solved numerically in the momentum
space. As was shown before for the test-charge—test-charge interaction [8, 9], this method
is accurate. The Schdinger equation in the momentum space is given by

1
ey | F4 Vista = (@) = EV@. @

We have discretized the integral ovgrin equation (4) in the form of a matrix. The
eigenenergy and eigenfunction problem is then solved numerically by a standard method
for matrix diagonalization. Details can be found in reference [8] and reference [9]. At low
electron density the matrix is ill defined fgf — g = 0, and the numerical results are less
accurate in the case of an attractive test charge where the binding energy is dominated by the
behaviour forqg" — q. This is important in the weakly screened case where the variational
method sometimes gives a slightly larger binding energy than the numerical method.

For three dimensions the wave functign(r) is given by, ;(r)Y;. (¢, 0) [17]. The
degeneracy of these statesgis= 2/ + 1. ¢,,;(r) is the solution of the radial Sabdinger
equation for the effective potentidls s (r) = V;(r) + Vie 5o (r) With Vi(r) = 1(1 + 1)/2m*r2.

V.r7(r) is strongly repulsive at small distanc€s;(r — 0)/Ryd* = I(I+1)a*?/r?>+2a*/r.

It is clear that forl > O the behaviour of the wave function for smalis determined by
Vi(r), and ¢,,(r — 0) o r'. In the momentum space the wave function is given by
V(@) = b,1(q)Yim(0, @) and ¢, (g — 0) x ¢’

For two dimensions we usg(r) = ¢,,;(r) exp[tilg] with degeneracy;, = 1 for/ =0
andg, = 2 forl > 0. ¢,,(r) is the solution of the radial Sabdinger equation for the

2
q
ﬂlp(Q) +
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effective potentialV,;/(r) = Vi(r) + Viese(r) with Vi(r) = 12/2m*r%. In the momentum
space the wave function is written d@<q) = ¢,,:(q) exp(zile). In the following we will
use¢ (r) instead ofg, ().

In the following we also use the trial-wave-function method, which is easy to apply if
more accurate expressions for the LFC become available. In the present paper we derive
estimates for the accuracy of this method by comparing with the matrix-diagonalization

method. This method is numerically very demanding because no symmetry arguments have
been used.

3. Negative test charges

3.1. The variational wave function

With a trial wave functionp,,.(r) the variational energy is given b§,,, = (T) + (V}) +
(Viese). The averag@O) = [~ dr ri=2¢,,, (r)* Oy, (r) for O =T, V; and V., can be
calculated analytically for some trial wave functions. We use as the variational radial wave
function

Dvar (r) = A}"kl/zeirz/zm2 (5)

with the normalization constam and the variational parametetgs and«. The screened
repulsive potential shows a minimum as a functiorrdike a one-dimensional oscillator
potential; this fact motivated the choice ¢f,, (r).
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Figure 1. The screened potenti&. . (r) versus distance for r; = 40 in three dimensions for
a negative test charge. For the solid line the LFC is included and the dashed line represents the
RPA. In the inset we shoW;, s.(r,,) andr,, versusr;.

The variational wave function shows a maximumrat= (k;/2)Y?«a. Fork; > 0 the
wave function has a node at= 0 and we use the notatiorn = 1 for the radial quantum
numbern,. For different values of the notation for the state,! is 1s, 1p or 1d. We find
that the bound states are very extended in space due to the large repulsion at small distances:
see the large value of, found for the minimum of the screened potential in figure 1. The
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variational form of the radial wave function as given in equation (5) was successfully used
in describing the bound states for the test-charge—test-charge interaction. For details, see
references [8, 9].

3.2. Results for three dimensions

In the real space the screened Coulomb interaction in three dimensions is given by

1 ° .
Vze,xc(r) = ﬁ/{; dq q Sm(qr)vfe,sc(Q)~ (6)

A representative example fdr,. ,.(r) is shown in figure 1 for, = 40 with a minimum
Viese(rm) = —6.93 mRyd at r,, = 34.0a*. Note the strong Coulomb repulsion for small
distances. We remark that the LFC shifts the minimum to lower energies and to larger
distances as compared to the RPA. A systematic study,of (r,,) andr,, versusr, is
shown in the inset of figure 1. We note the strong variatiorVef. (r,,) with ry with a
minimum of —12.4 mRyd' atr, = 9.
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Figure 2. The minimal energyE,,;, and variational parametets and k1 versusr, for n, =1
and/ = 0, 1, 2 in three dimensions including the LFC for a negative test charge. The solid dots
are the results obtained by matrix diagonalization.

Our results for the binding energy versysare shown in figure 2. The binding energies
are of order 1 mRydand the lower-lying energy states are well described by our variational
method. However, when the binding energy is small, the matrix-diagonalization method
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gives a larger binding energy than the variational method.rfFer r,. = 20 no bound state
exists. Our variational results give a smaller binding energy with a critical density given
by r,. = 27.5. Figure 2 contains the complete information about the ground state and the
excited states.

The variational parametets and k; versusr, are also shown in figure 2. Fey = 40
we foundr* = 34.6a* for [ = 0, which is in good agreement with),; see figure 1r* and
r» increase with increasing. Note thate andk; are nearly independent dfwhich means
that all of these states show a maximum at nearly the samer,,.
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Figure 3. The minimal energyE,,;, and variational parametets andk; versusrs for n, =1
and/ = 0, 1 in three dimensions within the RPA for a negative test charge.

Similar results are obtained within the RPA when the LFC is set to zero; see figure 3.
However, the binding energy of the ground state is about a factor of 3 smaller than with
the LFC andr,. is much largen(r,. =~ 40). These results are interesting from a theoretical
point of view: from figure 3 we conclude that many-body effects described by the LFC are
not necessary in order to obtain bound states. However, the inclusion of the LFC reduces
the critical density considerably: remember thatoc 1/73.
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Figure 4. The screened potenti&, ,.(r) versus the distancefor r, = 10 in two dimensions
for a negative test charge. For the solid line the LFC is included and the dashed line represents
the RPA. In the inset we shoW, ;. (r,,) andr,, versusr;.

3.3. Results for two dimensions

In two dimensions the screened Coulomb interaction in the real space is given by

l [0¢]
Vte,sc(r) = Z / dq qJO(qr)VIe,sc(Q)~ (7)
0
Jo(x) is the zero-order Bessel function of the first kind. A representative example for
Vie.se(r) is shown in figure 4 forr; = 10 with a minimum ofV,, . (r,,) = —85 mRyd

atr,, = 7.4a*. We remark that the LFC does not lower the minimum as compared to the
RPA. A systematic study oV, ,.(r,,) andr, versusr, is shown in the inset of figure 4.
We note the strong variation df;, ,.(r,) with ry with a minimum of —1204 mRyd" at

rg = 3.6. It is clear that in two dimensions the attraction is a factor 10 larger than that in
three dimensions; compare the insets in figure 1 and figure 4.

Our results for the binding energy versysare shown in figure 5. The binding energies
are of order 20 mRyd In general we find that the matrix-diagonalization method gives
a larger binding energy than the variational method, as expectedr, Forr,, = 4.7 no
bound state is found. Our variational results give a smaller binding energy with the critical
densityr,. = 5.9.

The variational parametets and k; versusr, are also shown in figure 5. Fey = 10
we find thatr* = 7.7a* for I = 0, which is in good agreement witk,; see figure 4. In
two dimensions the bound states are less extended in space than in three dimensions.

4. Positive test charges

4.1. The screened potential

In figure 6 we show the screened potential for a positive test charge fer3 and three
dimensions. We present results for the test-charge—test-charge interaction, the test-charge—
electron interaction, the RPA, and the Thomas—Fermi approximation (TFA). Within the
TFA one usesG(q) = 0, andX(g) is replaced by the density of states at the Fermi energy
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Figure 5. The minimal energyE,,;, and variational parametets andk; versusr for n, =1
and/ =0, 1, 2 in two dimensions including the LFC for a negative test charge. The solid dots
are the results obtained by matrix diagonalization.

or = Xo(g = 0). Itis important to realize that already far = 3 important differences exist

for the screened potential due to many-body effects. For normal metals the Wigner—Seitz
parameter is given by ¥ r;, < 5. We hope that figure 6 will convince experimenters to
take many-body effects seriously. The small differences seen in figure 6 give rise to very
different bound-state energies, as shown in the following.

4.2. The variational wave function

We apply variational wave function of the (unscreened) hydrogen atom. For the ground
state, which is the 1s state, we use

¢var (V) - Ae—r/Zu. (8)
For the first excited state, which is the 2s state, we use
bvar(r) = AL — rD)e"/%, 9)

Note that(192s = 0, which implies a condition foD. For the second excited state, the
2p state, we use

Dvar(r) = Are_r/2M~ (10)

v, k and . are the variational parameters. For details of the variational form, see reference
[8] and reference [9], where the screened test-charge—test-charge interaction was studied.
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Vsc{r)/Ry*

Figure 6. The screened potentidl;.(r) versus distance for r; = 3 in three dimensions

for a positive test charge. We show the results for the test-charge—test-charge interaction, the
test-charge—electron interaction, the RPA, and the Thomas—Fermi approximation (TFA). On the
r.h.s. an enlarged energy scale is used.

;;0 I‘IIIIHI T TTTTT §zbilllll0§
> test charge-electron \ I3spd 3
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» @
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Figure 7. The minimal energ\t,,;, versusr, for the 1s state (I.h.s.) and for the 2s and 2p states
(r.h.s.) in three dimensions including the LFC (solid lines) and within the RPA (dashed lines) for
a positive test charge. The solid dots are the results obtained by matrix diagonalization. Some
numerical results for 3s, 3p, and 3d states (with the LFC included) are shown as bars.

The equations given there can be used together with the appropriate form for the screening
function &;.(¢).

4.3. Results for three dimensions

Our results for the ground-state energy and the first excited states verates shown in

figure 7. With increasing density the binding energies decrease due to screening effects and
vanish at a critical density, which is Mott's densit, [18]. Note that the 2s and the 2p
states are nearly degenerate for> 30. For very low densityr;, = 40 andr, = 50, we

also found 3s, 3p and 3d states with the matrix-diagonalization method and using the LFC;
see figure 7. However, we have not studied these states in detail.
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We mention thatv/3q* = 0.62/r, and, accordinglyN,, is related to a critical density
parameterr,,. For the ground state we obtaineg, = 2.13 by using the RPA and
rsw = 175 by using the LFC. Reasonable agreement is obtained between the variational
method and the matrix-diagonalization method.

&.-05 — 0%
& lee, testcharge- 9;:
> -06 4 ‘\ electron--1 &
@ d=2 e
g -07 + W 428
2 L 2
£ -08 T 38
(7] 7]
2 -09 1 8-
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8 -19 ! ! 5.5
001 01 1 031 0 100

fs

Figure 8. The minimal energyt,,;, versusr; for the 1s state in two dimensions including the
LFC (solid lines) and within the RPA (dashed lines) for a positive test charge. The solid dots
are the results obtained by matrix diagonalization.

4.4. Results for two dimensions

In two dimensions the Coulomb potential screened within the RPA has a bound state for any
electron density [19, 20]. A critical density (Mott’s density), where the binding energy of
the ground state vanishes, does not exist in two dimensions. Our results for the ground-state
energy versug, are shown in figure 8. As found in three dimensions, the LFC increases
the binding-state energy as compared to the RPA./Fep oo one finds the unscreened
value for the binding energy, which is4 Ryd".

Our results for the excited states are shown in figure 9. The LFC increases the binding
energy by 50%. For; — oo the unscreened value4 Ryd/9 is obtained. The Mott
density for the excited statesiig, = 11 if the LFC is included and abouty, = 27 within
the RPA.

5. Discussion

5.1. Negative test charges

We believe that our results in three dimensions are only of theoretical interest. Normal
metals are characterized by < 5 while molecular metals such as the doped fulleride
K3Cgo have smaller density, ~ 10. In three-dimensional systems the bound states for the
test-charge—electron interaction appear at low density. At densjtieslO we expect that
disorder effects will dominate the physical properties.

Our results obtained for two-dimensional systems might be relevant in nature for two
reasons. First, by remote doping, disorder effects can be made small in heterostructures.
In addition, the bound states fot > r,. have a large binding energy, and even for
the test-charge—electron interaction the paramegter~ 4.7 seems accessible in two-
dimensional systems. Currently used remotely doped GaAG@#l,As heterostructures
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Figure 9. The minimal energyE,,;, versusr, for the 2s and 2p states in two dimensions
including the LFC (solid lines) and within the RPA (dashed lines) for a positive test charge. The
solid dots are the results obtained by matrix diagonalization.

become insulating [21] due to a metal-insulator transition [22] at 5.

We therefore suggest the following experiment. Place a negatively charged impurity
into a two-dimensional electron gas which is remotely doped in order to provide a finite
electron density. For, > r,. we predict bound states between the impurity and an electron
in the electron gas if disorder effects are sufficiently small. The disorder must be smaller
than in the samples used in reference [21].

Table 1. For negative test charges: the critical density paramgteand binding energy for
ry &~ 2ry. Of the 1s state found by the variational method for two and three dimensions. The
values in curly brackets are the results obtained by using the matrix-diagonalization method.

d=3 d=2
Fse Els(zrsc) Fsce Els(zrsc)
RPA 57.0{40} —-0.5mRyd 9.8{6.8f —10 mRyd
Test-charge—electron 27(20y —-1.3mRyd 5.9{4.77 —-20 mRyd

Test-charge—test-charge [8, 9] 88 —40 mRyd 2.4{2.1} —350 mRyd

The critical parameter,. for the existence of bound states can be compared with
results obtained for the test-charge—test-charge interaction. The results are shown in table
1. In two-dimensional systems. is much lower and the binding energy is much higher
than in three-dimensional systems. Exchange effects present for the test-electron—electron
interaction lead to a larget. compared to that for the test-electron—test-electron interaction.

If many-body effects described by the LFC are neglected no difference exists between
the test-charge—test-charge and test-charge—electron interactions, and the RPA is the relevant
theory. Therefore, the RPA represents the lowest-order approximation to the above-
discussed problem of the screened electron—electron interaction. In order to get the full
information for the electron—electron interaction, not only the LFC for charge fluctuations
but also the LFC for spin fluctuations has to be included [10]. While our calculations
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for the test-charge—electron interaction give a much smaller binding energy than for the
test-charge—test-charge interaction, we believe that the electron—electron interaction gives
similar results to those for the test-electron—test-electron interaction; this was demonstrated
in reference [5] for the two-dimensional electron gas with= 4 and using the Hubbard
approximation.

Friedel oscillations are induced by the sharpness of the Fermi surface which leads to
the non-analytic behaviour oaXo(q) for ¢ = 2kr. Within the RPA withG(g) = 0 one
can replaceXo(g) by Xo(¢g = 0) = pr and one obtains the TFA: Friedel oscillations
and attractive parts in the screened potential are absent. If one reptaces by
Xo(q) = pr/(1+ q2/4k§) Friedel oscillations are absent; however, attractive parts in the
screened potential still exist. Therefore, we conclude thatythependence in the factor
[1 — G(¢9)] Xo(g) gives rise to an attractive part W, . (r) and V,, ;.(r). For Vi . (r) the
strength of this attractive part is determined 6Yq), while G(¢) and Xy(g) determine
Viese(r): by replacingXo(q) by Xo(g) = pr/(1+ q?/4k2) we obtain similar values for
Viese(rm) 10 those obtained by using the Lindhard expressionXgtqg). Therefore, we
believe that Friedel oscillations are not the origin of the attraction found for the screened
potential.

The relevance of our calculation for possible superconductivity due to a Coulomb-
interaction-induced attraction goes back to Kohn and Luttinger [23], where an electron gas
with a short-range interaction has been discussed. The effective electron—electron interaction
was discussed by Kukkonen and Overhauser [10] and in reference [24]. For the three-
dimensional jellium model it was recently argued [25] that Coulomb-interaction-induced
superconductivity should not occur fey < 10. This is in qualitative agreement with our
calculation for three dimensions; see table 1. On the other hand we conclude from our results
for the binding energy and for,. that in two-dimensional systems attraction should occur
at higher electron density than in three dimensions. Our results for quasi-one-dimensional
systems will be published elsewhere [26].

5.2. Positive test charges

Our results for a positive test charge are relevant for a charged donor screened by an electron
gas and should be important for excitons, too. Our quantitative results on the effects of
the LFC indicate that many-body effects must be included in the screening function. In
addition, the screening function of the test-charge—electron interaction has to be used.

Table 2. For positive test charges: Mott's critical density parametgr for the 1s, the 2s

and the 2p state for the test-charge—electron interaction obtained by the variational method for
two and three dimensions. The values in curly brackets are our results obtained by using the
matrix-diagonalization method.

d=3 d=2

rsm(RPA)  roy(LFC)  rom(RPA) - ropy (LFC)

1s state  2.41.8 1.8(15 — —
2s state  17.816.9 12.1{11.5 26.6{26] 11.2{11)
2p state  19.19.5 12.9{12.4 28.8{29 11.2{11)

The results concerning Mott's parametgy; for the vanishing of the bound state are
summarized in table 2 for the ground state (1s) and the excited states (2s, 2p). Large shifts
due to many-body effects are found gy, for the excited states. For three dimensions most
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previous calculations [27, 28] of,, have been performed within the variational approach
and for the ground state only.

6. Conclusion

We studied the screened test-charge—electron interaction assuming a test particle with
negative charge. The bound-state energies found in the low-electron-density range for
rg > ry are smaller than for the test-charge—test-charge interaction. Our calculation
shows that with decreasing system dimension the binding energy increases, and in the
two-dimensional electron gas, bound states can be expected at a moderate (denshy.

In this paper we compared results fqr obtained for the test-charge—electron interaction
and the test charge—test-charge interaction including many-body effects via the LFC.

For a test particle with a positive charge, many-body effects are important—however,
only at a quantitative level. If many-body effects are taken into account, the binding energy
increases by more than 20% for50< r, < 10. For excited states we find that Mott's
parameter,, is strongly reduced by many-body effects.
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